

INDIA 4 IASTM

For success in a changing world

DAILY CURRENT AFFAIRS 22-04-2025

GS-1

1. Magai River
2. Mahadev Koli Tribe

GS-3

3. James Webb Space Telescope
4. Surface Mount Technology

Magai River

Syllabus: GS-1; Geography- Rivers, GS-4; Ethics

Context

- Tired Of Waiting, UP Villagers Building 108-Ft Bridge With Crowd funding.

About

- **Origin:** Dubawan village, Azamgarh district, Uttar Pradesh, India.
- **Course:** Flows through Azamgarh, Mau, and Ghazipur districts.
- **Confluence:** Joins the Tamsa River near Bhikharipur in Ballia district; the Tamsa later merges with the Ganges.

Villages Along Its Banks

- Muhammad Pur, Hata (Mohammadabad), Silaich, Karimuddinpur, Mahend, Nasrat Pur, Madhuban, Malikpura.

Significance

- Supports **pan (betel) leaf cultivation**, a major local crop.
- Critical for **irrigation** and **rural connectivity** in eastern UP.

Recent Development

- The 105-foot crowdfunded bridge over the Magai, built by Kyampur Chhavni residents, highlights community resilience against infrastructural delays.
- Retired Army engineer Ravindra Yadav led the effort, contributing 10 lakh rupees and technical expertise.

Mahadev Koli Tribe

Syllabus: GS-1; Tribes of India

Context

- Forest knowledge of Maharashtra's Mahadev Koli tribe can help fight climate change: study.

About

- The **Mahadev Koli** are a **Scheduled Tribe (ST)** primarily residing in **Maharashtra** (Ahmednagar, Pune, Satara, Kolhapur) and parts of **Madhya Pradesh**. They are a **sub-group of the Koli community**, known for their **agricultural and forest-based livelihoods**. Recent studies highlight their rich **traditional ecological knowledge (TEK)**, making them crucial for **climate resilience and biodiversity conservation**.

Key Characteristics

(A) Geographical Distribution

- **Western Maharashtra:** Akole block (Ahmednagar), Pune, Satara, Solapur.
- **Vidarbha region & bordering areas of Madhya Pradesh.**
- **Habitat:** Forested regions of the **North Western Ghats** (a **UNESCO Biodiversity Hotspot**).

(B) Socio-Cultural Aspects

- **Language:** Marathi & Koli dialects.
- **Religion:** Hindu, primarily worshipping **Lord Shiva (Mahadev)**.
- **Livelihood:**
 - Traditionally **agriculturists** (jowar, bajra, pulses).
 - **Forest-dependent** (medicinal plant collection, honey gathering).
 - Some engage in **fishing** (due to broader Koli community links).
- **Social Structure:** Clan-based (**exogamous kuls**).

(C) Economic Condition

- **Challenges:**
 - Small landholdings → **dependence on rain-fed farming**.
 - **Seasonal migration** for labor (MGNREGA, construction).
- **Government Support:**
 - ST status → **reservations, scholarships, land rights under FRA 2006**.

Ecological Knowledge & Climate Resilience (Recent Study by WOTR)

A **2023 study** by the **Watershed Organisation Trust (WOTR)** highlights:

(A) Medicinal Expertise

- Use **51 native tree species** (41 genera, 25 families) for treating:
 - Fever, dysentery, joint pain, snake bites, skin infections.
- **Example:** *Kadamb* (Neolamarckia cadamba) for fever, *Bibba* (Semecarpus anacardium) for arthritis.

(B) Climate Adaptation Skills

- Detect **micro-climatic changes** (e.g., shifts in flowering seasons).
- **Real-time ecological monitoring** – gaps not covered by satellite data.
- **Published in Springer's book** on climate mitigation strategies.

(C) Policy Relevance

- **Why Important?**
 - Their TEK is **scientifically valid** but **underrepresented in climate policies**.
 - Aligns with **SDG 13 (Climate Action)** & **SDG 15 (Life on Land)**.
- **Key Suggestion:** Integrate TEK into **national adaptation plans**.
- _____

Governance & Challenges

(A) Government Schemes

- **Forest Rights Act (FRA), 2006** – Ensures land & resource rights.
- **Tribal Sub-Plan (TSP)** – Funds welfare programs.
- **National Mission on Himalayan Studies (NMHS)** – Documents tribal knowledge.

(B) Key Issues

- **Land Alienation** – Lack of formal land titles.
- **Healthcare & Education Gaps** – Low literacy, limited infrastructure.
- **Climate Threats** – Declining medicinal plant availability.
- **Policy Exclusion** – TEK remains undocumented in scientific literature.

James Webb Space Telescope

Syllabus: GS-3; Science & Technology

Context

- James Webb telescope reveals hidden past of the 'Crystal Ball Nebula'

About

- The **James Webb Space Telescope (JWST)** is a large, space-based observatory developed by **NASA**, in collaboration with the **European Space Agency (ESA)** and the **Canadian Space Agency (CSA)**. It is the most powerful and complex space telescope ever built, designed to study the universe in **infrared light**.

Key Features of JWST:

- **Primary Mirror:** 6.5 meters (21.3 feet) in diameter, made of 18 hexagonal gold-coated beryllium segments.
- **Sunshield:** A five-layered, tennis court-sized shield that protects the telescope from the Sun's heat, keeping it at cryogenic temperatures (below -223°C / -370°F).
- **Orbit Location:** Positioned at the **Lagrange Point 2 (L2)**, about **1.5 million km (1 million miles)** from Earth.
- **Wavelength Coverage:** Primarily observes in **infrared** (0.6 to 28.5 microns), allowing it to see through dust clouds and detect the earliest galaxies.
- **Scientific Instruments:**
 - **NIRCam** (Near-Infrared Camera)
 - **NIRSpec** (Near-Infrared Spectrograph)
 - **MIRI** (Mid-Infrared Instrument)
 - **NIRISS** (Near-Infrared Imager and Slitless Spectrograph)

Mission Objectives:

- **Study the First Galaxies:** Observe the formation of the first stars and galaxies after the Big Bang (~13.5 billion years ago).
- **Exoplanet Atmospheres:** Analyze the chemical composition of exoplanet atmospheres for signs of habitability.
- **Star and Planet Formation:** Investigate how stars and planetary systems form inside dust clouds.
- **Solar System Exploration:** Study objects within our own solar system, such as planets, moons, and asteroids.

Achievements So Far:

- Detected the **oldest known galaxies** (from \sim 300 million years after the Big Bang).
- Provided detailed spectra of **exoplanet atmospheres**, including water vapor and CO_2 .
- Captured stunning images of **nebulas, star clusters, and distant galaxies**.
- Studied **Jupiter, Saturn, and other solar system objects** in new detail.

Comparison with Hubble:

Feature	Hubble Space Telescope	James Webb Space Telescope
Launch Year	1990	2021
Wavelength	Ultraviolet, Infrared	Visible, Near- Near & Mid-Infrared
Mirror Size	2.4 meters	6.5 meters
Orbit	Low Earth Orbit (\sim 547 km)	L2 Point (\sim 1.5 million km)
Primary Focus	Visible universe, deep fields	Early universe, infrared astronomy

About- Crystal Ball Nebula

- The **Crystal Ball Nebula** (also known as **NGC 1514**) is a **planetary nebula** located in the constellation **Taurus**, approximately **800 light-years** from Earth.
- It was discovered by **William Herschel** in **1790**. Unlike many other planetary nebulae, which appear as faint, symmetrical shells, NGC 1514 has a unique **bipolar (two-lobed) structure** with a bright central star illuminating the surrounding gas.

Key Features:

- **Type:** Bipolar Planetary Nebula (unlike the more common spherical or elliptical shapes).
- **Central Star:** A binary star system consisting of a hot white dwarf and a cooler companion star (likely a giant or subgiant).
- **Structure:**
 - Two large, faint ionized gas lobes extending outward.
 - A bright inner shell with complex filamentary structures.
 - Glowing due to ultraviolet radiation from the central star.
- **Discovery Significance:** Herschel realized that nebulae could be formed by dying stars, not just unresolved star clusters.

Observational Details:

- **Apparent Magnitude:** ~ 10.9 (visible with medium-sized telescopes).
- **Diameter:** ~ 2.5 light-years.
- **Emission Lines:** Strong in Oxygen-III (OIII) and Hydrogen-alpha (H α), making it appear greenish in images.

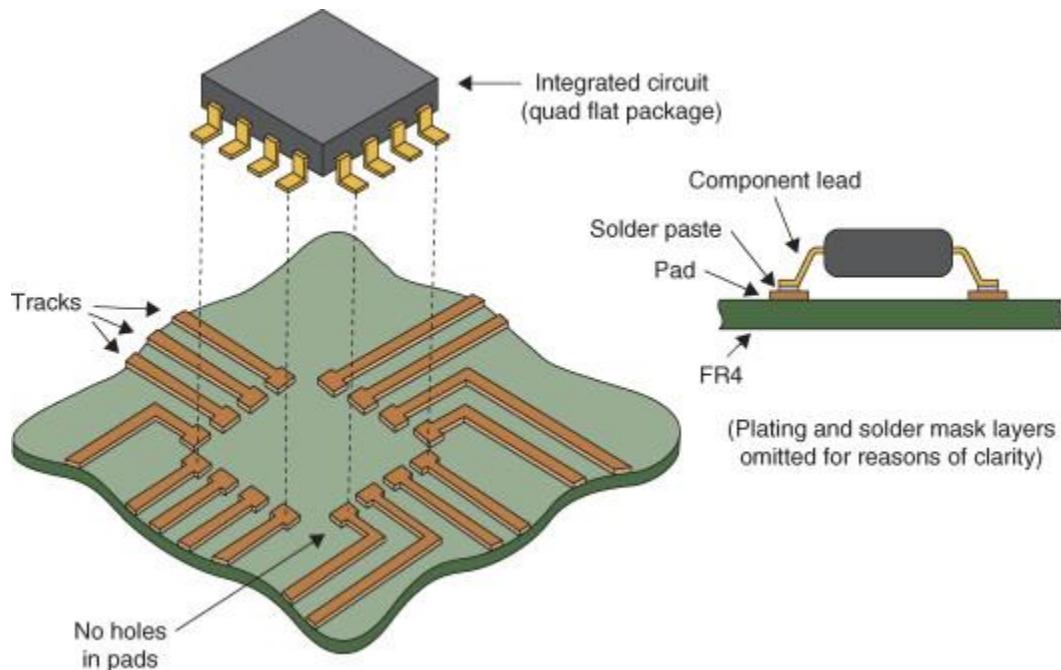
Scientific Importance:

- **Binary Star Influence:** The nebula's unusual shape is believed to be caused by **interactions between the two central stars**, shaping the ejected material.
- **Studying Stellar Evolution:** Helps astronomers understand how **low to intermediate-mass stars (1-8 solar masses)** shed their outer layers at the end of their lives.
- **Infrared Observations:** The **Spitzer Space Telescope** and **WISE** detected **dust rings** around the central star, suggesting previous mass-loss episodes.

Comparison with Other Planetary Nebulae:

Feature	Crystal Ball Nebula (NGC 1514)	Ring Nebula (M57)	Helix Nebula (NGC 7293)
Shape	Bipolar (two-lobed)	Ring-like	Spiral/Helix
Central Star	Binary system (white dwarf + giant)	Single white dwarf	Single white dwarf
Distance	~800 ly	~2,300 ly	~655 ly
Discovery Year	1790	1779	1824

Surface Mount Technology


Syllabus: GS-3; Science & Technology

Context

- Union Minister for Electronics and Information Technology, Railways, and Information & Broadcasting, Vaishnav Inaugurates VVDN's Largest Surface Mount Technology Line & Mechanical Innovation Park In Manesar.

About

- **Surface Mount Technology (SMT)** is a method of **assembling electronic circuits** where components are mounted directly onto the surface of a **printed circuit board (PCB)** rather than inserted into holes.
- It is widely used in modern electronics due to its efficiency, compactness, and reliability.

Key Features of SMT

- **Smaller Components** – SMT components (SMDs - Surface Mount Devices) are much smaller than traditional through-hole components, allowing for higher component density.

- **Higher Automation** – SMT is highly automated, reducing labor costs and increasing production speed.
- **Better Performance** – Shorter lead lengths reduce parasitic inductance and capacitance, improving high-frequency performance.
- **Cost-Effective** – Reduced material usage and faster assembly lower manufacturing costs.
- **Dual-Sided Mounting** – Components can be placed on both sides of the PCB, saving space.

Advantages of SMT

- **Miniaturization** – Enables smaller and lighter electronic devices.
- **Higher Speed & Performance** – Better for high-frequency applications (e.g., smartphones, IoT devices).
- **Reduced Manual Labor** – Mostly automated, reducing human errors.
- **Lower Production Costs** – Due to bulk manufacturing and less material usage.

Disadvantages of SMT

- **Difficult Manual Repair** – Tiny components make repairs harder compared to through-hole technology.
- **Thermal Stress Issues** – Solder joints may crack under extreme temperature changes.
- **Not Ideal for High-Power Components** – Some large/heavy components still require through-hole mounting.

Applications of SMT

- **Consumer Electronics** (Smartphones, Laptops, Tablets)
- **Medical Devices** (Portable monitors, diagnostic equipment)
- **Automotive Electronics** (ECUs, sensors, infotainment systems)
- **Aerospace & Defense** (Avionics, communication systems)
- **Industrial Automation** (Robotics, control systems)

Comparison with Through-Hole Technology (THT)

Feature	SMT	THT
Size	Smaller	Larger
Automation	High	Low to Moderate
PCB Space	Uses both sides	Mostly single-sided
Cost	Lower for mass production	Higher due to manual work
Repairability	Difficult	Easier

Why is SMT Important for India?

- **Boost to Electronics Manufacturing** – Aligns with initiatives like **Make in India** and **Production Linked Incentive (PLI) Scheme**.
- **Growth of Semiconductor Industry** – Supports India's push for self-reliance in electronics.
- **Employment Generation** – Expands opportunities in PCB assembly and electronics manufacturing.