

For success in a changing world

DAILY CURRENT AFFAIRS 25-10-2025

GS-1

1. Celestial Body –Chiron

GS-2

2. Fomoflation

GS-3

3. Pokkali rice
4. Gaganyaan
5. Quantum Echoes Algorithm

Celestial Body -Chiron

Syllabus: GS-1: Geography – Solar system.

Context:

Recently, astronomers for the first time **observed a ring system forming around the icy celestial body Chiron**, marking a significant discovery in outer solar system studies.

About Chiron

- **Classification:** Chiron belongs to a group called **Centaurs** – celestial objects that orbit the Sun between **Jupiter and Neptune**.
- **Nature:** Exhibits characteristics of **both asteroids and comets**.
- **Discovery:** Found in **1977** by **astronomer Charles Kowal**.
- **Orbital Period:** Takes approximately **50 years** to complete one revolution around the Sun.
- **Diameter:** Around **200 km (125 miles)**.

Recent Observation – Ring System

- **Discovery:** For the first time, scientists observed a **ring system** around Chiron using **stellar occultation** technique.
- **Structure:**
 - **Total of 4 rings** detected.
 - **Three inner rings** are embedded within a **dusty, disk-like region**.
- **Composition:** Rings are primarily made of **water ice** and **rocky material**, similar to those seen around **Saturn**.

- **Formation Hypothesis:** Likely the result of **collisions** or **volatile ejections** from Chiron's surface.

Physical & Chemical Composition

- Composed mainly of:
 - Rock
 - Water ice
 - Complex organic compounds
- Exhibits **comet-like activity**, occasionally **ejecting gas and dust** into space when heated by the Sun.

Observation Method

- **Technique Used: Stellar Occultation**
 - Occurs when Chiron passes in front of a distant star, briefly blocking its light.
 - Enables detailed study of its **size, shape, and surrounding material**.
- **Research Collaboration:** Conducted by a **Brazilian, French, and Spanish** team.

Significance of Discovery

- **First evidence of ring system formation** around a Centaur-class object.
- Suggests that **ring systems may be more common** among small bodies than previously thought.
- Provides insights into **planetary ring evolution** and **solar system dynamics**.
- Supports the theory that **Centaurs are transitional objects**, evolving from **Kuiper Belt objects** into **comets**.

Fomoflation

Syllabus: GS-2; International Relations

Context

- The U.S. President recently signed a **proclamation raising the annual fee for H-1B visas to \$100,000**, sparking widespread panic among employers and visa applicants.
- This sudden surge in urgency and demand led to skyrocketing ticket and processing costs, providing a **real-world example of “fomoflation”** — a phenomenon where **fear-driven consumer psychology fuels inflation beyond normal economic causes**.

About Fomoflation

- **Definition:**
Fomoflation refers to inflation driven by the **Fear Of Missing Out (FOMO)** — when consumers, fearing scarcity or future price hikes, **rush to purchase goods or services**, thereby driving prices up artificially.
- **Key Characteristics:**
 - **Behavioral-based inflation:** Rooted in *demand psychology* rather than standard economic triggers like monetary policy or production costs.
 - **Artificial demand loop:** Panic buying creates a **self-reinforcing cycle** — demand spikes → prices rise → fear of scarcity deepens → more buying follows.
 - **Amplified by media and social platforms**, which spread perceived shortages or opportunities faster than markets can stabilize.
- **Comparison with Traditional Inflation:**
 - *Normal inflation* = macroeconomic causes (supply chain issues, fiscal deficits, monetary expansion).
 - *Fomoflation* = **psychological causes** (panic, speculation, herd behaviour).
- **Examples:**
 - The **H-1B visa fee panic** is a current international illustration.
 - During festive seasons in India, **staple prices like pulses and oil** often rise when media reports suggest impending shortages — even if supplies remain stable.

Pokkali rice

Syllabus: GS-3: Sustainable Agriculture – Traditional Agriculture.

Context:

The ‘endangered’ pokkali farming cluster of Ezhikkara, which is set to receive an experiential tourism boost.

Pokkali Rice

Pokkali is a traditional, saline-resistant rice variety cultivated in the coastal regions of **Kerala**, primarily in the **Alappuzha, Ernakulam, and Thrissur districts**.

It is among the oldest known rice cultivation systems in the world, uniquely adapted to **brackish water ecosystems**.

Key Features of Pokkali Rice

Feature	Description
Type	Indigenous, saline-tolerant rice variety
Region	Coastal Kerala (Kuttanad & adjoining coastal wetlands)
Soil Type	Waterlogged, saline, clayey soils
Irrigation Source	Tidal brackish water (backwaters)
Cultivation Season	June to November (monsoon season)
Height	Tall variety (up to 1.5–2 m) — helps survive flooding
Duration	110–150 days
GI Tag	Granted in 2008 , under the name “Pokkali Rice”
Farming System	Integrated Rice-Fish farming system

Unique Eco-Agricultural System

1. Integrated Rice-Prawn Farming (Rotation System)

- During **monsoon (June–Nov)** → Pokkali rice is grown when water salinity is low.
- After harvest → The same fields are converted into **prawn/fish farms** (Nov–Apr) when salinity rises.

- This **cyclical use** enhances soil fertility and reduces chemical input needs.

2. Zero Chemical Input

- No use of fertilizers or pesticides — completely **organic and sustainable**.
- Nutrient recycling through **prawn excreta** enriches the soil.

3. Climate-Resilient System

- Pokkali thrives in **flood-prone and saline areas**.
- Highly resistant to **salinity, flooding, and pest attacks** — ideal for coastal resilience against **climate change and sea-level rise**.

Scientific and Environmental Importance

Aspect	Details
Salinity Tolerance	Genetic trait makes it valuable for breeding salt-tolerant rice varieties.
Carbon Sequestration	Acts as a carbon sink due to anaerobic, waterlogged cultivation conditions.
Biodiversity	Supports fish, crabs, and microflora in the paddy ecosystem.
Sustainability	Traditional model of ecological balance between agriculture and aquaculture.

Economic and Social Aspects

- Cultivated mostly by **small and marginal farmers**.
- Labour-intensive but offers **dual income**: from **rice and prawn harvests**.
- **Declining cultivation area** due to:
 - Urbanisation and land conversion.
 - Labour shortage.
 - Younger generations moving away from agriculture.

Research and Conservation

- **Kerala Agricultural University (KAU)** is leading conservation and genetic improvement of Pokkali.
- Research on using Pokkali genes for developing **salt-tolerant rice hybrids**.
- Promoted under:

- FAO's Globally Important Agricultural Heritage Systems (GIAHS) nomination.
- Paramparagat Krishi Vikas Yojana (PKVY) for organic farming.

Recognition and Initiatives

- GI Tag (2008) for "Pokkali Rice."
- UN FAO recognition of Pokkali wetlands as potential agro-ecological heritage sites.
- Efforts by Kerala State Biodiversity Board (KSBB) to revive Pokkali farming through farmer cooperatives and branding.

Conclusion

Pokkali rice represents a model of ecological harmony, blending traditional wisdom with climate resilience.

Its conservation and promotion can contribute to:

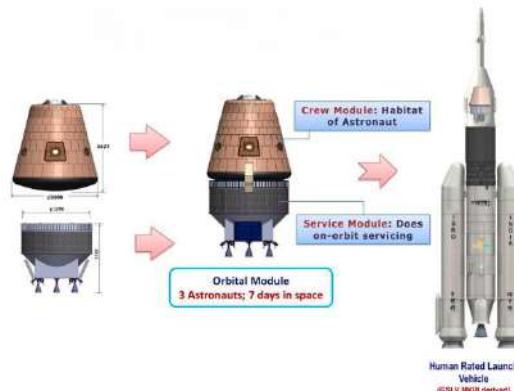
- Food security under changing climate conditions,
- Preservation of biodiversity, and
- Revitalization of coastal livelihoods.

Gaganyaan

Syllabus: GS-3: Science and Technology – Space Missions

Context:

ISRO Chairman confirmed that around 90% of development work for the mission has been completed.


Recent Developments

- Key progress areas:
 - Human-rated Launch Vehicle (HLVM3) development and testing.
 - Crew Module (CM) and Service Module (SM) systems nearing completion.
 - Life-support systems, crew escape mechanism, and re-entry validation tests are in advanced stages.
- Uncrewed test missions are planned before the crewed launch:

- **First uncrewed mission** to be launched in **December 2025**, carrying the humanoid robot *Vyommitra*.
- **Crewed mission** expected in **early 2027**, following successful tests.

Background

- **Gaganyaan** is India's first **human spaceflight mission**, being developed by the **Indian Space Research Organisation (ISRO)**.
- Objective: To **send Indian astronauts (Gagannauts)** into **Low Earth Orbit (LEO)** (~400 km altitude) and ensure their safe return.
- The mission aims to demonstrate India's capability in **crew safety, life-support systems, and human-rated launch vehicles**.
- It will make India the **fourth nation** to independently conduct human spaceflight missions after the **USA, Russia, and China**.

Technical Components

(a) Launch Vehicle

- Uses the **Human-Rated LVM3 (HLVM3)** – an upgraded version of the GSLV Mk-III.
- Equipped with additional safety features, redundancy, and reliability standards suitable for human spaceflight.

(b) Crew Module (CM)

- Designed to carry **3 astronauts**.
- Features **thermal protection, environmental control, crew displays, and communication systems**.
- Re-entry tested for **aerodynamic stability and safe landing** using parachute-based splashdown.

(c) Service Module (SM)

- Provides **power, propulsion, and support systems** to the Crew Module in orbit.

(d) Crew Escape System

- A **quick-reaction safety mechanism** designed to pull the crew module away from the rocket in case of an emergency during launch.

(e) Life Support and Monitoring Systems

- Ensure **temperature, oxygen, CO₂ levels, and humidity** suitable for human survival.
- Integration and qualification nearly completed.

Testing & Validation

- Series of **abort tests and re-entry trials** conducted to validate crew safety.
- **Vyommitra**, the humanoid robot, will simulate human physiological conditions during uncrewed flights.
- Extensive ground testing and astronaut training are ongoing at the **Astronaut Training Facility in Bengaluru**.

Significance of the Mission

- **Strategic Milestone:** Positions India among advanced spacefaring nations.
- **Technological Advancement:** Develops indigenous capability in complex systems like life-support, crew escape, and human-rated vehicles.
- **National Prestige:** Reflects India's growing competence in high-end space technology.
- **Economic & Industrial Boost:** Encourages private sector participation in aerospace and manufacturing.
- **Scientific Benefits:** Enhances R&D in robotics, material science, and space medicine.
- **Future Pathway:** Lays foundation for long-duration missions, lunar projects, and potential **Indian Space Station** in the future.

Challenges Ahead

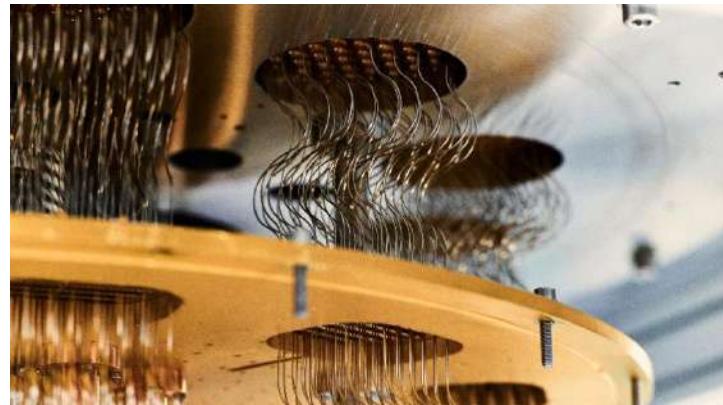
- **Human safety** is paramount — requires flawless system performance.
- **Stringent reliability standards** needed for life-critical systems.
- **High cost and time-intensive testing** for qualification.
- **Coordination** across multiple agencies and private partners.
- **Maintaining timelines** while ensuring uncompromised safety.

Future Roadmap

- Conduct all **uncrewed missions** by **2025-26** to validate systems.
- Launch **first crewed flight** in **2027** with three Indian astronauts.
- Possible extension towards:
 - **Long-duration crewed missions.**
 - **Microgravity experiments** in space.
 - Collaboration with international agencies for **joint missions.**

Conclusion

- The Gaganyaan mission marks a **historic leap** in India's space journey, showcasing self-reliance in human space technology.
- With 90% of the developmental work complete, ISRO is in the **final preparation phase** toward achieving a **crewed orbital flight.**
- Successful execution will not only enhance India's space stature but also **open avenues for future space exploration and scientific innovation.**


Quantum Echoes Algorithm

Syllabus: GS-3: Science and Technology – Frontier Technology.

Context:

- Google Quantum AI has unveiled a new algorithm called "**Quantum Echoes**", achieving a performance **13,000 times faster** than the world's most powerful classical supercomputers.
- This marks a significant step towards achieving **practical quantum computing**, where quantum systems outperform classical ones in real, useful tasks.

Background

- Quantum computing harnesses the principles of **superposition** and **entanglement** to perform parallel computation.
- Previous milestones by Google, such as **quantum supremacy (2019)**, demonstrated speed advantages but lacked real-world verification.
- The **Quantum Echoes** experiment is viewed as a move towards *verifiable and useful* quantum advantage.

Key Features of the Quantum Echoes Algorithm

- **Core Concept:**
 - Uses an “echo” method — sending a signal into a quantum system and then reversing it — to measure interference and entanglement.
 - Enables scientists to extract deep insights into quantum system dynamics.
- **Performance:**
 - Executed on Google’s **Willow QPU**, a 105-qubit processor.
 - Achieved a **13,000× speed-up** compared to the fastest supercomputers for specific physics simulations.
- **Verification:**
 - Unlike earlier quantum advantage claims, the results are **verifiable**, enhancing scientific credibility.
 - The outcomes can be cross-checked either by other quantum systems or controlled experiments.
- **Scientific Achievement:**
 - Demonstrated the ability to compute **out-of-time-order correlators (OTOCs)**, a complex quantum interference effect nearly impossible to simulate classically.

Significance of the Breakthrough

- **Towards Practical Quantum Advantage:** Moves quantum computing from theoretical demonstrations to solving physically meaningful problems.
- **Massive Computational Efficiency:** Tasks that might take **years or decades** on a supercomputer can be performed in **hours** using Quantum Echoes.
- **Wider Applications:**
 - Drug discovery and molecular modelling
 - Materials science
 - Artificial intelligence and machine learning optimisation
 - Climate modelling and financial simulation
- **Algorithm-Hardware Synergy:** Highlights the importance of developing both advanced qubits and sophisticated algorithms simultaneously.

Challenges and Limitations

- Current systems have **limited qubits** and still face **error correction** challenges.
- The algorithm represents a **proof-of-concept**, not yet suitable for large-scale industrial applications.
- **Verification at scale** remains difficult, and reproducibility needs independent confirmation.
- Sustained progress will require stable qubit architecture, quantum error mitigation, and cost-effective scaling.

Implications for India and Global Context

- **Strategic Significance:** Quantum computing has critical implications for **cybersecurity, defence, and advanced scientific research**.
- **India's Initiatives:**
 - **National Quantum Mission (NQM)** aims to develop 1,000-qubit quantum computers by 2030.
 - Promotion of research through IITs, IISc, and DRDO's quantum technology projects.
- **Global Race:** Major powers like the US, China, and the EU are competing for **quantum leadership**; India must enhance collaboration and investment to stay competitive.

Conclusion

- Google's **Quantum Echoes** algorithm represents a pivotal advancement in quantum computing — verifiable, fast, and closer to real-world utility.

- It demonstrates that **useful quantum advantage** is within reach, not merely a theoretical promise.
- For India, such global developments underline the urgency of strengthening **quantum research ecosystems**, policy frameworks, and international cooperation.