

INDIA 4 IASTM

For success in a changing world

DAILY CURRENT AFFAIRS 10-01-2026

Mapping Perspective

1. Bura Chapori Wildlife Sanctuary

Prelims Perspective

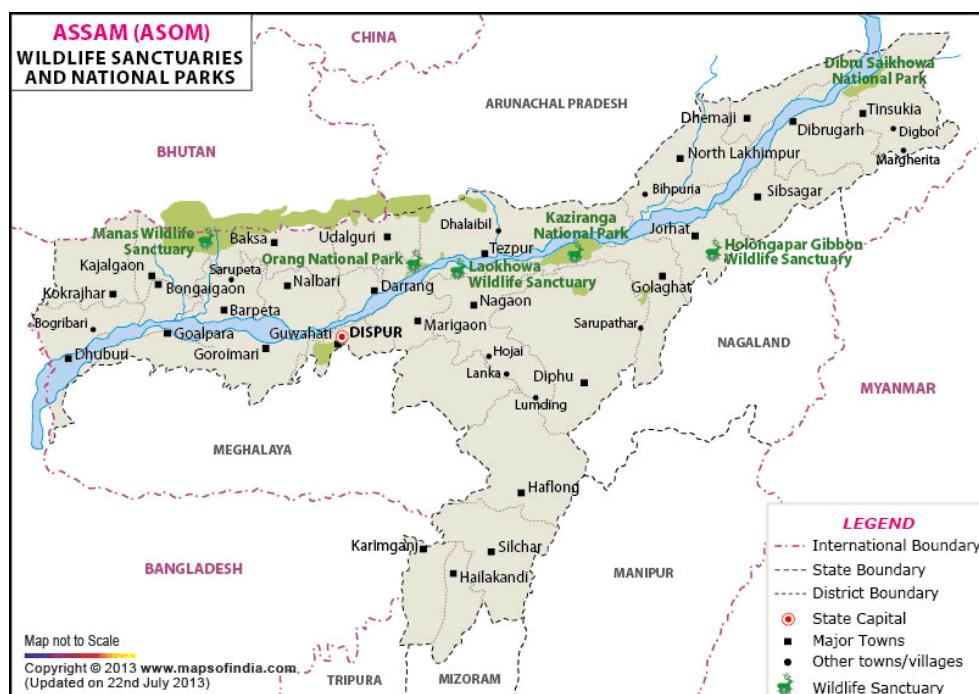
2. Mpemba Effect
3. Calamaria Mizoramensis

Mains Perspective

4. ISRO and the next big challenge
5. Madhav Gadgil

Bura Chapori Wildlife Sanctuary

Syllabus: GS-3; Biodiversity


Context:

- A team of government officials recently visited **encroached areas earmarked for compensatory afforestation** within **Bura Chapori Wildlife Sanctuary**.
- The issue highlights challenges related to **encroachment, habitat restoration, and floodplain conservation** in Assam's grassland ecosystems.

About Bura Chapori Wildlife Sanctuary

Location & Extent

- **State/District:** Assam – Sonitpur district
- **Physiographic setting:** Southern bank of the **Brahmaputra**
- **Area:** 44.06 sq. km
- Lies **north of Laokhowa Wildlife Sanctuary**, forming a **contiguous landscape**.

Ecological Significance

- Together with Laokhowa WLS, it constitutes the **Laokhowa-Burachapori ecosystem**.
- **Notified as a buffer zone (2007)** of Kaziranga Tiger Reserve.
- Represents a critical Brahmaputra **floodplain grassland ecosystem**.

Hydrology & Climate

- Predominantly **low-lying terrain**.
- **Highly flood-prone during summer/monsoon**, influencing grassland regeneration and species movement.

Biodiversity

Flora

- Dominated by:
 - **Wet alluvial grasslands**
 - **Riparian vegetation**
 - **Semi-evergreen forests**
- Several plant species possess **commercial and medicinal importance**.

Fauna

- **Mammals:**
 - Tiger
 - Elephant
 - Wild buffalo
 - One-horned rhinoceros
 - Hog deer
 - Wild boar
- **Avifauna (important for Prelims):**
 - Bengal florican (critically endangered)
 - Black-necked stork
 - Open-billed stork
 - White-eyed pochard
 - Mallard
 - Spot-billed duck
 - Large whistling teal

Mpemba Effect

Syllabus: GS-3; General Science - Physics

Context

Researchers at JNCASR used supercomputers to simulate ice formation, validating the **Mpemba Effect**.

About Mpemba Effect

- Phenomenon where hot water freezes faster than cold water under certain conditions.
- First described by **Aristotle**.
- Named after **Erasto Mpemba** (1969).

Possible Explanations

- Presence of micro-bubbles
- Enhanced evaporation
- Faster convection due to lower density
- Frost acting as an insulator in cold water
- Changes in dissolved compounds

Recent Findings

- Not unique to water.
- Can occur in other fluid-to-solid phase transitions.

Calamaria Mizoramensis

Syllabus: GS-3; Environment- Species Discovery

Context

A new species of reed snake, **Calamaria mizoramensis**, was discovered in Mizoram.

About the Species

- Non-venomous, nocturnal, semi-fossorial.
- Found at elevations of **670–1,295 m**.
- Habitat: Humid forested hills, near human settlements.
- Appearance: Dark brown to black body with faint stripes and yellow underside.
- Likely distribution: Mizoram, Manipur, Nagaland, Assam.

Reed Snakes: Key Facts

- Genus: *Calamaria*
- Family: Colubridae
- Small, slender, non-venomous
- Found in moist forests of South & Southeast Asia
- Feed on soft-bodied invertebrates

ISRO and the next big challenge

Syllabus: GS-3: Science and Technology – Satellite.

Context:

- India has demonstrated **scientific and technological excellence** in space missions.
- The next phase for **ISRO** is not just *mission success*, but **industrial-scale execution**.
- Focus is shifting from:
 - Occasional high-impact missions
 - To **high-frequency launches, mass manufacturing, and commercial viability**

What Does “Industrial-Scale Success” Mean?

Industrial-scale success implies:

- **Mass production** of rockets, satellites, and subsystems
- **High launch cadence** with predictable schedules
- Development of a **robust domestic supply chain**
- Strong **private sector participation**
- Cost competitiveness in the **global commercial space market**
- Transition from a *research-driven agency* to an *ecosystem enabler*

India's Strengths So Far

A. Mission Successes

- Successful interplanetary and lunar missions
- Demonstrated reliability of launch vehicles
- Advanced capabilities in navigation, communication, and earth observation satellites

B. Indigenous Technology Base

- Development of launch vehicles, cryogenic engines, avionics
- Increasing indigenisation of components and materials

C. Cost Efficiency

- Low-cost access to space compared to global peers
- Competitive pricing in satellite launch services

Why Industrial Scale Is a Challenge for ISRO

Limited Manufacturing Ecosystem

- ISRO traditionally **designs and integrates**, but does not mass-manufacture
- Dependence on:
 - Small number of public sector units
 - Fragmented private suppliers
- Shortage of advanced tooling and aerospace-grade manufacturing hubs

Supply Chain Constraints

- Dependence on imports for:
 - High-end alloys
 - Precision electronics
 - Specialised materials
- Vulnerability to geopolitical and export-control disruptions

Private Sector Integration Issues

- Private industry participation historically limited to:
 - Low-value components
 - Fabrication rather than system-level responsibility
- Challenges include:

- Technology transfer concerns
- Risk-sharing mechanisms
- Long gestation period for returns

Production and Testing Bottlenecks

- Existing testing and integration facilities were designed for:
 - Limited annual missions
- Industrial scale requires:
 - Parallel production lines
 - Continuous testing infrastructure
 - Faster certification cycles

E. Global Competition

- International players operate with:
 - Vertical integration
 - Reusable launch systems
 - High launch frequency
- India must compete on:
 - Cost
 - Reliability
 - Turnaround time

Institutional and Policy Support

A. Space Sector Reforms

- Opening up of the space sector to private players
- Separation of roles:
 - ISRO → R&D and technology development
 - Industry → Manufacturing and operations

B. Key Institutions

- IN-SPACe
 - Facilitates private sector participation
 - Acts as regulator and promoter

➤ **NewSpace India Limited (NSIL)**

- Commercial arm for launches and satellite services
- Focus on outsourcing manufacturing to industry

Way Forward: Achieving Industrial-Scale Success

A. Building a Space Manufacturing Ecosystem

- Creation of **space industrial clusters**
- Incentives for MSMEs and startups
- Long-term procurement visibility to industry

B. Deepening Private Sector Role

- End-to-end responsibility for launch vehicles and satellites
- Public-private partnerships in:
 - Rocket production
 - Satellite constellations
 - Ground infrastructure

C. Strengthening Supply Chains

- Indigenous development of:
 - Advanced materials
 - Electronics and sensors
- Reducing import dependence for critical components

D. Human Resource and Skill Development

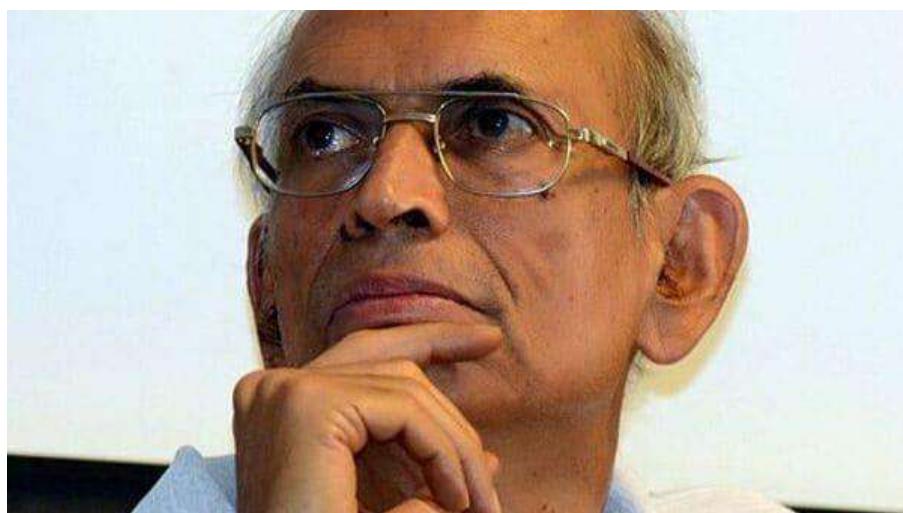
- Industry-ready aerospace workforce
- Collaboration between:
 - ISRO
 - Academia
 - Private industry

Significance for India

- Positions India as a **global space manufacturing hub**
- Boosts:
 - High-technology exports

- Employment generation
- Strategic autonomy
- Enhances India's role in:
 - Commercial launches
 - Satellite services
 - Global space governance

Madhav Gadgil


Syllabus: GS-3: Ecology and GS-4: Environmental Stewardship.

Context:

- Recently eminent ecologist **Madhav Gadgil** passed away.

Who is Madhav Gadgil?

- Renowned **Indian ecologist**, environmental thinker, and public policy advisor
- Known for pioneering work on **biodiversity conservation, ecological democracy, and people-centric environmental governance**.

Academic & Professional Background

- Former **Professor at the Indian Institute of Science (IISc), Bengaluru**
- Founder of the **Centre for Ecological Sciences (CES), IISc**
- Major contributor to ecology, conservation biology, and environmental policy in India

Key Contributions

1. Western Ghats Ecology

- Chairperson of the **Western Ghats Ecology Expert Panel (WGEEP)**, 2010
- Produced the **Gadgil Committee Report (2011)**

Core Recommendations:

- Declared the **entire Western Ghats** as an **Ecologically Sensitive Area (ESA)**
- Classified the region into **ESZ-1, ESZ-2, ESZ-3** based on ecological fragility
- Strong restrictions on:
 - Mining
 - Thermal power plants
 - Large dams
 - Polluting industries
- Emphasised **bottom-up governance and local community participation**

2. Ecological Democracy

- Advocated **decentralised environmental decision-making**
- Supported **Gram Sabhas** and local bodies in resource management
- Criticised top-down, technocratic conservation models

3. People and Biodiversity

- Strong proponent of **People's Biodiversity Registers (PBRs)**
- Influenced implementation of the **Biological Diversity Act, 2002**
- Highlighted the role of **indigenous knowledge systems** in conservation

Gadgil Committee vs Kasturirangan Committee

Aspect	Gadgil Committee (WGEEP)	Kasturirangan Committee (HLWG)
Coverage	Entire Western Ghats	~37% of Western Ghats
Approach	Ecological priority	Development-friendly
Governance	Decentralised, local	Centralised, technocratic
Restrictions	Strong, comprehensive	Relatively diluted

Major Publications

- Ecology Is for People
- This Fissured Land: An Ecological History of India (with Ramachandra Guha)
- Mapping India's Natural Resources

Mains Perspective

- **GS Paper III:** Environment – conservation models, ESA, sustainable development
- **GS Paper IV:** Ethics – participatory governance, environmental ethics

Criticism & Challenges

- Recommendations viewed as **anti-development** by some states
- Strong opposition from **mining, infrastructure, and plantation lobbies**
- Partial dilution of recommendations by later committees

Conclusion

- Madhav Gadgil represents a **scientific, ethical, and participatory vision of environmental governance**
- His ideas remain central to debates on **sustainable development, federalism, and ecological justice** in India